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Abstract
CD4+ regulatory T (Treg) cells, dependent upon the transcription factor Foxp3, contrib-
ute to tumour immunosuppression but are also required for immune homeostasis. There 
is interest in developing therapies that selectively target the immunosuppressive func-
tion of Treg cells within tumours without disrupting their systemic anti- inflammatory 
function. High levels of expression of chemokine (C- C motif) receptor 8 (CCR8) dis-
criminate Treg cells within tumours from those found in systemic lymphoid tissues. It 
has recently been proposed that disruption of CCR8 function using blocking anti- CCR8 
antibodies results in reduced accumulation of Treg cells within tumours and disruption 
of their immunosuppressive function. Here, using Ccr8−/− mice, we show that CCR8 
function is not required for Treg cell accumulation or immunosuppression in the con-
text of syngeneic MC38 colorectal adenocarcinoma and B16 melanoma tumours. We 
observed high levels of CCR8 expression on tumour- infiltrating Treg cells which were 
abolished in Ccr8−/− mice. High levels of CCR8 marked cells with high levels of sup-
pressive function. However, whereas systemic ablation of Treg cells resulted in strikingly 
diminished tumour burden, growth of subcutaneously implanted tumours was unaffected 
by systemic CCR8 loss. Consistently, we observed minimal impact of systemic CCR8 
ablation on the frequency, phenotype and function of tumour- infiltrating Treg cells and 
conventional T (Tconv) function. These findings suggest that CCR8 is not required for 
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INTRODUCTION

Tumours grow in immunocompetent hosts despite the ability 
of cells of the adaptive immune system to recognise and kill 
cancer cells. In part, this phenomenon is attributable to the 
process of immunosuppression. Tumour immunosuppression 
is dependent upon a number of peripheral tolerance mecha-
nisms normally employed to prevent unwanted inflammation 
and autoimmune responses. Therapeutic approaches aimed 
at disrupting tumour immunosuppression would ideally do 
so without disturbing systemic peripheral tolerance. CD4+ 
regulatory T (Treg) cells are a suppressive T- cell subset re-
quired to prevent autoimmune and allergic inflammation 
[1– 3]. Treg cells are often found at high relative frequencies 
within tumours where they limit immune- mediated rejection 
of disease [4– 6]. Consistent with their suppressive function, 
low Treg to conventional T (Tconv) cell ratios are associated 
with favourable survival in several types of cancer including 
ovarian cancer [7– 8], breast cancer [9], non- small- cell lung 
cancer [10], hepatocellular carcinoma [11], renal cell can-
cer [12], pancreatic cancer [13], gastric cancer [14], cervical 
cancer [15] and colorectal cancer [16]. Thus, Treg cells di-
minish both autoimmune and allergic inflammation, but also 
hinder effective immune responses against tumours. There is 
a need to develop therapies that selectively target the immu-
nosuppressive function of Treg cells within tumours without 
disrupting their systemic anti- inflammatory function.

Recent evidence suggests that Treg cells within different tis-
sues exhibit distinct molecular profiles and functional character-
istics. For instance, adipose tissue Treg cells, which express the 
transcription factor peroxisome proliferator- activated receptor 
(PPAR)- γ, are critical regulators of tissue metabolism and insulin 
sensitivity [17– 18]. Treg cells in skeletal muscle expressing IL- 
33 contribute to muscle repair through expression of molecules 
such as the epidermal growth factor receptor ligand amphiregulin 
(AREG) [19– 20]. Recent studies have now shown that Treg cells 
infiltrating a variety of human tumours, including breast, colorec-
tal and non- small- cell lung cancers, exhibit an altered transcrip-
tional profile [21– 22]. These studies showed that Treg cells within 
tumours are highly activated when compared to systemic and/or 
normal tissue Treg cells. Among the identified differences was 
highly increased expression of the chemokine (C- C motif) recep-
tor 8 (Ccr8) gene, encoding CCR8, within tumour- infiltrating Treg 
cells as compared with Treg cells found in other tissues.

Chemokines are small (∼8– 14  kDa) secreted proteins, 
structurally similar to cytokines, which regulate cell signal-
ling and trafficking through interactions with a subset of 
seven transmembrane G protein- coupled receptors called 
chemokine receptors [23]. The chemokine receptor CCR8 is 
a receptor for CCL1 (in humans and mice) and CCL18 (in 
humans) [24– 25]. CCR8 is expressed on Treg cells, a subset 
of type helper (Th)- 2 cells, monocytic cells and natural killer 
(NK) cells [24,26– 29]. CCR8 has been proposed to play a 
role in allergic inflammation through loss- of- function studies 
in mice [28], although the extent of its involvement is unclear, 
with contradictory results in the literature [30– 31]. CCR8 sig-
nalling is thought to contribute to Treg cell suppressive func-
tion and has been found to promote donor Treg cell survival in 
a murine model of graft- versus- host disease [32]. Moreover, 
CCR8 signalling by CCL1 has been proposed to potentiate 
Treg cell proliferation and suppressive function in the context 
of inflammation of the central nervous system [33].

A recent study has suggested that CCR8 function is re-
quired for Treg cell- mediated tumour immunosuppression 
[34]. Antibodies with proposed blocking activity were shown 
to reduce Treg cell accumulation within tumours, drive 
Tconv cell activation and reduce tumour growth. In addition 
to blockade, antibodies can induce cell depletion through 
antibody- dependent cellular cytotoxicity (ADCC) and fixation 
of complement via the classical pathway of complement acti-
vation. Indeed, surface plasmon resonance experiments have 
shown that rat IgG2b antibodies of different specificity bind all 
mouse fixed chain receptors with relatively high affinity, such 
that their biological effect was reduced in Fcer1g- deficient 
mice [35]. These findings raise the untested possibility that 
the IgG2b antibody used in prior experiments to determine the 
function of CCR8 in tumour immunity depleted Treg cells via 
ADCC in addition to blocking CCR8 function [34]. Therefore, 
the function of CCR8 in tumour immunity remains unclear.

In this study, we examined the function of CCR8 in tumour 
immunosuppression using mice in which CCR8 expression has 
been genetically ablated. We confirmed high levels of CCR8 
expression on tumour- infiltrating Treg cells, which was abol-
ished on cells from Ccr8−/− mice. Whereas systemic ablation 
of Treg cells resulted in strikingly diminished tumour growth, 
growth of subcutaneously implanted tumours was unaffected 
by systemic CCR8 loss. Consistently, we observed minimal im-
pact of systemic CCR8 ablation on the frequency, phenotype 

Treg cell accumulation and immunosuppressive function within tumours and that deple-
tion of CCR8+ Treg cells rather than blockade of CCR8 function is a more promising 
avenue for selective immunotherapy.
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and function of tumour- infiltrating Treg cells. These findings 
suggest that CCR8 is not required for Treg cell accumulation 
and immunosuppressive function within tumours and that de-
pletion of CCR8+ Treg cells rather than blockade of CCR8 
function may provide a means of selective immunotherapy.

METHODS

Mice

Foxp3EGFP- DTR mice, originally described by Kim et al [36], 
were obtained from Jackson Laboratories. Ccr8−/− mice were 
a kind gift from Sergio Lira [26] and Frank Tacke. Animals 
were genotyped using a custom genotyping service provided 
by Transnetyx® Inc. All mice were housed at the Babraham 
Institute Biological Services Unit or the Cambridge University 
Biomedical Services Gurdon Institute animal facilities. 
Experiments were performed using mice 8– 14 weeks of age, 
with male and female mice equally distributed into experiment 
and control groups. Tumour measurements were completed by 
an independent investigator who was not aware of treatment 
groups or genotypes. Experiments were repeated 2– 4 times 
using 3– 8 mice per group. All animal experiments were con-
ducted in accordance with UK Home Office guidelines and 
were approved by the Babraham Institute and/or University of 
Cambridge Animal Welfare and Ethics Review Board.

Depletion of Treg cells with diphtheria toxin

Diphtheria toxin (DTx) from Corynebacterium diphtheriae 
(Sigma- Aldrich) was obtained in lyophilized powder form 
and reconstituted in sterile double- distilled water accord-
ing to the manufacturer's instructions. Solutions for injec-
tion were made up in sterile PBS to a dose of 25 μg/kg. To 
achieve transient depletion of Treg cells in Foxp3EGFP- DTR 
mice, DTx was administered via intraperitoneal injection 
in 100 μl on days 7, 9, 11 and 14 after tumour implantation.

MC38 and B16- F10 heterotopic subcutaneous 
tumour implantation model

MC38 colon carcinoma cells were purchased from Kerafast. 
B16- F10 melanoma cells were purchased from ATCC. Cell 
lines were passaged in DMEM (Invitrogen) supplemented 
with 10% FCS and antibiotics. 3·5 × 105 − 2 × 106 MC38 
cells in 100 µl PBS or 1·25 × 105 B16- F10 cells in 100 µl 
PBS were injected subcutaneously into the right flanks of 
mice, and tumours were measured with digital callipers 
at serial time- points after implantation as previously de-
scribed [37].

Suppression of Tconv cells by Tregs

The suppressive capacity of Treg cells was tested as previ-
ously described [38]. CCR8+ and CCR8− Treg cells were 
FACS sorted from MC38 tumours of Foxp3EGFP- DTR mice. 
Naïve CD4+ Tconv cells (CD25− CD44− CD62L+) were ob-
tained from the spleens of WT CD45.1 mice via florescence- 
activated cell sorting (FACS) and stained with CellTrace 
Violet™ (CTV) according to the manufacturer's protocol 
(Thermo Fisher Scientific). Treg cells and Tconv cells were 
plated in a 1:4 ratio in the presence of anti- CD3 (BioLegend 
1 µg/ml) and Rag2−/− antigen- presenting cells (APCs). Naïve 
Tconv cells cultured without Treg cells were used as the pro-
liferating control. Cell division was evaluated after 4 days of 
culture.

Flow cytometry analysis

Tumour samples were digested using collagenase and DNase 
for 30 min at 37°C, and Lympholyte® (Cedarlane) was used 
to isolate lymphocytes from tumours. Cell suspensions were 
filtered using 40µm cell strainers (BD Biosciences). Spleens 
were mechanically dissociated over a 40µm cell strainer. Red 
blood cells were lysed using ACK Lysing Buffer (Gibco). 
Cells were stained with the Fixable Viability Dye eFluor™ 
780 (Thermo Fisher Scientific) to discriminate between live 
and dead cells and then incubated with the following surface 
antibodies for 30 min on ice: anti- TCRβ PE (H57- 597), anti-
 CD8 PE- Cy7 (53– 6·7), anti- CD25 APC (PC61.5), anti- CD44 
PerCP- Cyanine5.5 (IM7), anti- CD45.1 APC (A20) from eBi-
oscience; anti- CD4 BUV395 (GK1.5), anti- CD62L BUV737 
(MEL- 14) from BD Biosciences and anti- CCR8 BV421 
(SA214G2), anti- Thy1.2 BV605 (53- 2.1) from BioLegend. 
Cells were stimulated with phorbol 12- myristate 13- acetate 
(PMA) and ionomycin and blocked with brefeldin A (BFA) 
for 4  h in RPMI 1640 complete medium. Intracellular an-
tibodies anti- Foxp3 APC (FJK- 16S), anti- IFN- γ FITC 
(XMG1.2) and anti- TNF PE- Cy7 (MP6- XT22) were pur-
chased from eBioscience and used with the eBioscience 
Foxp3/Transcription Factor Staining Buffer Set (Invitrogen, 
Thermo Fisher Scientific) according to the manufacturer's 
protocol. Samples were analysed using BD Fortessa and 
Beckman Coulter CytoFLEX analysers. After analysis, data 
were analysed using FlowJo software (Tree Star, Inc.).

Statistical analysis

Statistical analysis was performed using GraphPad Prism 
software. Two- tailed Student's t tests were used to calculate 
statistical significance of the difference in sample means. 
P values of less than 0·05 were considered statistically 
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significant. In all figures, data represent the mean ± the stand-
ard error of the mean (SEM). P values correlate with sym-
bols as follows: ns = not significant, *P ≤ 0·05, **P ≤ 0·01, 
***P ≤ 0·001, ****P ≤ 0·0001.

RESULTS

CCR8 is highly expressed by tumour- 
infiltrating Treg cells and a subset of Tconv 
cells within tumours

To examine the expression of CCR8 on tumour- infiltrating T 
cells, we subcutaneously implanted syngeneic MC38 colorectal 

adenocarcinoma cells into wild- type (WT) C57BL/6 animals. 
Flow cytometry analysis of tumours revealed high levels of 
CCR8 expression in a substantial fraction of Foxp3+ CD4+ T 
cells and a smaller fraction of CD4+ and CD8+ Tconv cells 
within tumours of tumour- bearing animals, whereas CCR8 
expression within corresponding T cell populations in sys-
temic lymphoid tissues was substantially lower (Figure 1a). 
To test the specificity of this signal and of the antibody used 
in these experiments, we examined anti- CCR8 antibody stain-
ing on the surface of cells within MC38 tumours implanted in 
WT and Ccr8−/− animals. Whereas a substantial proportion of 
Foxp3+ Treg cells within tumours of WT animals were posi-
tive for anti- CCR8 antibody staining, this signal was abolished 
upon cells infiltrating tumours of Ccr8−/− animals, confirming 

F I G U R E  1  High levels of CCR8 expression discriminate Foxp3+ Treg cells within subcutaneously implanted syngeneic MC38 colorectal 
adenocarcinoma tumours. (a) Representative flow cytometry (left) and replicate measurements (right) of CCR8 expression on indicated CD4+ and 
CD8+ Tcell subsets within tumours and spleens of MC38 tumour- bearing animals at day 21 following tumour implantation. (b) Representative flow 
cytometry (left) and replicate measurements (right) of CCR8 antibody staining on Treg and CD4+ Tconv and CD8+T cells within MC38 tumours of 
WT and Ccr8−/− animals at day 21 following tumour implantation. Data are representative of 2 independently repeated experiments. Bars and error 
represent mean and SEM. Student's t test; ***P < 0·001; ****P < 0·0001; ns, not significant
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F I G U R E  2  CCR8 marks highly suppressive Foxp3+ Treg cells within MC38 colorectal adenocarcinoma tumours. Representative flow 
cytometry (left) of CTV- labelled naïve CD4+ Tconv cells incubated with no Treg cells, or at a 4:1 ratio with intratumoral CCR8− Treg 
cells or CCR8+ Treg cells from Foxp3EGFP- DTR mice after 4 days incubation, and replicate measurements of Tconv cell division (right). 
Data are representative of 2 independently repeated experiments. Bars and error represent mean and SEM. ordinary one- way ANOVA; 
*P < 0·05;**P < 0·01 ***P < 0·001
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F I G U R E  3  Systemic loss of CCR8 does not affect growth of subcutaneously implanted MC38 or B16- F10 tumours in contrast to total 
Treg cell ablation. (a) Volume of heterotopic MC38 colorectal adenocarcinoma tumours at indicated time- points following implantation into 
Foxp3EGFP- DTR animals which were administered with phosphate- buffered saline (PBS) or diphtheria toxin (DTx) on days 7, 9, 11 and 14. (b) 
Volume of heterotopic MC38 colorectal adenocarcinoma tumours at indicated time- points following implantation into animals of the indicated 
genotypes. (c) Volume of heterotopic B16- F10 melanoma tumours at indicated time- points following implantation into Foxp3EGFP- DTR animals 
which were administered with PBS or DTx on days 7, 9, 11 and 14. (d) Volume of heterotopic B16- F10 melanoma tumours at indicated time- points 
following implantation into animals of the indicated genotypes. n = 5– 9 animals per genotype. Data are representative of 2 independently repeated 
experiments. Bars and error represent mean and SEM. Student's t test; **P < 0·01; ***P < 0·001
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both the target and specificity of the antibody used (Figure 1b). 
CCR8+ Treg cells have been previously described as having 
enhanced suppressive potential compared to their negative 
counterparts [34,39]. In order to test in our model whether 
CCR8 expression marks Treg cells with enhanced suppres-
sive function, we sorted CCR8− and CCR8+ intratumoral Treg 
cells by FACS and tested their capacity to suppress prolifera-
tion of autologous naïve CD4+ Tconv cells in vitro (Figure 2). 
Both CCR8− and CCR8+ Treg cells were capable of suppress-
ing proliferation at 1:4 Treg cell:Tconv cell ratio. However, 
CCR8+ Treg cells had higher suppressive capacity.

Loss of CCR8 expression does not 
affect the growth of subcutaneously implanted 
syngeneic tumours

To test the function of CCR8 in anti- tumour immunity, we 
measured the growth of subcutaneously implanted MC38 tu-
mours in littermate WT and Ccr8−/− animals and compared 
this to the effect of systemic experimental ablation of Treg cells 
using Foxp3EGFP- DTR mice, which express human diphtheria 

toxin receptor (DTR) and enhanced green fluorescent protein 
(EGFP) under the transcriptional control of the endogenous 
Foxp3 gene, enabling selective depletion of Foxp3+ Treg cells 
through administration of diphtheria toxin (DTx) [36]. Whereas 
systemic ablation of Treg cells resulted in substantially reduced 
growth of MC38 tumours (Figure 3a), systemic loss of CCR8 
expression had no significant effect on tumour growth (Figure 
3b). Importantly, we had similar observations using the synge-
neic B16- F10 melanoma tumour model, growth of which was 
highly sensitive to Treg cell depletion (Figure 3c) but not to 
germline ablation of Ccr8 (Figure 3d). These findings suggest 
that CCR8 function does not have a measurable effect on tu-
mour growth using a syngeneic tumour model highly sensitive 
to the suppressive function of Treg cells.

Loss of CCR8 expression does not affect Treg 
cell accumulation or activation of CD4+ or 
CD8+ Tconv cells within tumours

To formally test the function of CCR8 in Treg cell accumula-
tion within tumours, we examined the frequency and number 

F I G U R E  4  CCR8 expression is dispensable for Foxp3+ Treg cell accumulation within tumours. (a) Representative flow cytometry (left) and 
replicate measurements (right) of Foxp3+ Treg cells within spleens and MC38 tumours of WT and Ccr8−/− animals at day 21 following tumour 
implantation. (b) Representative flow cytometry (left) and replicate measurements (right) of CD4+ and CD8+ Tconv cells within spleens and 
MC38 tumours of WT and Ccr8−/− animals at day 21 following tumour implantation. n = 11– 18 mice per genotype. Data are representative of 4 
independently repeated experiments. Bars and error represent mean and SEM. Student's t test; ns, not significant
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of Foxp3+ Treg cells within MC38 tumours implanted in 
WT and Ccr8−/− animals (Figure 4a). This analysis revealed 
that loss of CCR8 function does not affect the frequency 
or total number of Treg cells within tumours and spleens. 
No increase was observed in the number of CD4+ or CD8+ 
Tconv cells within tumours of Ccr8−/− animals (Figure 4b). 
Consistently, we did not observe increased production of the 
type I cytokines IFN- γ and TNF among CD4+ Tconv (Figure 
5a) and CD8+ (Figure 5b) T cells within tumours or spleens. 
Collectively, these findings suggest that CCR8 function does 

not substantially affect anti- tumour immune responses in the 
syngeneic MC38 colorectal adenocarcinoma model, despite 
its sensitivity to Treg cell ablation.

DISCUSSION

The immunosuppressive function of Treg cells is an im-
portant therapeutic target in the immunotherapy of cancer. 
However, Treg- targeted therapies should ideally spare the 

F I G U R E  5  CCR8 expression does not impact suppression of CD4+ or CD8+ Tconv activation within tumours. (a) Representative flow 
cytometry (left) and replicate measurements (right) of IFN- γ and TNF expression as detected by intracellular cytokine staining of CD4+ Tconv cells 
from spleens and MC38 tumours of WT and Ccr8−/− animals at day 21 following tumour implantation. (b) Representative flow cytometry (left) 
and replicate measurements (right) of IFN- γ and TNF expression as detected by intracellular cytokine staining of CD8+ T cells from spleens and 
MC38 tumours of WT and Ccr8- KO animals at day 21 following tumour implantation. n = 11– 18 mice per genotype. Data are representative of 4 
independently repeated experiments. Bars and error represent mean and SEM. Student's t test; ns, not significant
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systemic anti- inflammatory function of Treg cells in other 
tissues. There is consequently considerable interest in under-
standing whether Treg cells within tumours possess unique 
molecular characteristics enabling their selective targeting, 
either through functional disruption or cellular depletion. 
Recent studies have identified high levels of CCR8 expres-
sion as a distinguishing feature of Treg cells within tumours. 
It has also been proposed, through experiments where anti- 
CCR8 antibodies have been systemically administered, that 
blockade of CCR8 function impairs the ability of Treg cells 
to suppress anti- tumour immunity [34]. Here, we formally 
tested the contribution of CCR8 to anti- tumour immunity 
using genetic loss- of- function experiments in mice. We 
found that CCR8 expression was dispensable both for Treg 
cell accumulation within tumours and for their immunosup-
pressive function. CCR8 is also reported to be expressed by 
Th2 cells, monocytic cells and NK cells. We observed no 
changes in the frequency of total CD4+ Tconv cells in the 
spleens or tumours of Ccr8−/− mice compared to Ccr8+/+ 
animals but did not in this study examine whether there were 
differences in the composition of the CD4+ Tconv compart-
ment. In addition, the contribution of CCR8 to the function 
of NK cells and monocytes within tumours was not resolved. 
Thus, while we observed no overall difference in Treg cell 
infiltration and tumour immunity in the absence of CCR8, it 
will be important to examine its functions in greater cellular 
and molecular resolution in future studies.

We would like to emphasise that our observations are not 
inconsistent with the recently reported ability of anti- CCR8 
antibodies to reduce tumour growth in syngeneic tumour mod-
els in mice, but suggest a re- interpretation of the mechanism 
underlying these observations [34]. In particular, while anti- 
CCR8 antibodies may have blocking activity, it is possible 
that the isotypes used also caused some extent of cellular de-
pletion through ADCC. Indeed, mouse fixed chain receptors 
can cross- react with antibodies of the rat IgG2b isotype [35]. 
Whether the anti- CCR8 antibodies used functioned in part 
through induction of Treg cell depletion has yet to be formally 
tested. The hypothesis that therapeutic depletion of CCR8+ 
cells rather than blockade of CCR8 function leads to induction 
of anti- tumour immunity is indeed consistent with recently re-
ported findings that administration of anti- CCR8 nanobodies 
with blocking function does not augment tumour immunity, 
but does so when provided the capability for ADCC [40].

Using Ccr8- deficient mice to confirm the specificity of 
anti- CCR8 staining, our findings validate prior conclusions 
that Treg cells infiltrating MC38 colorectal adenocarcinoma 
tumours express high levels of CCR8 on their cell surface. 
Thus, depletion of CCR8- expressing cells remains a poten-
tially important therapeutic approach. Our findings therefore 
do not lessen the importance of CCR8 as a potential target 
in therapies aimed at selectively targeting tumour- associated 
Treg cells, but suggest that therapeutic depletion of CCR8+ 

Treg cells rather than blockade of CCR8 function is likely to 
be more efficacious.
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