The interplay of effector and regulatory T cells in cancer
Rahul Roychoudhuri, Robert L Eil and Nicholas P Restifo

Regulatory T (Treg) cells suppress effector T (Teff) cells and prevent immune-mediated rejection of cancer. Much less appreciated are mechanisms by which Teff cells antagonize Treg cells. Herein, we consider how complex reciprocal interactions between Teff and Treg cells shape their population dynamics within tumors. Under states of tolerance, including during tumor escape, suppressed Teff cells support Treg cell populations through antigen-dependent provision of interleukin (IL)-2. During immune activation, Teff cells can lose this supportive capacity and directly antagonize Treg cell populations to neutralize their immunosuppressive function. While this latter state is rarely achieved spontaneously within tumors, we propose that therapeutic induction of immune activation has the potential to stably disrupt immunosuppressive population states resulting in durable cancer regression.

Address
National Cancer Institute (NCI), National Institutes of Health, Bethesda, MD 20892, USA

Corresponding authors: Roychoudhuri, Rahul (roychoudhuri@mail.nih.gov) and Restifo, Nicholas P (restifo@nih.gov)

Introduction

Growth of tumors in immunocompetent hosts is at odds with the powerful ability of the immune system to recognize and kill cancer cells. The cancer immunoediting hypothesis has been proposed as a conceptual framework to account for this behavior [1]. According to this hypothesis, tumor development is characterized by an initial ‘elimination’ phase, during which a majority of cancer cells are destroyed by various components of the immune system. This is followed by an ‘equilibrium’ phase, during which pressure from the immune system contributes to selection of tumor variants that give rise to an ‘escape’ phase characterized by evasion from immune control and unrestrained tumor growth. While selection of antigen-loss variants represents a mechanism of tumor escape and has been shown to contribute to growth of orthotopic tumors [1–2], it fails to explain why established tumors continue to express immunogenic epitopes that are recognized by tumor-infiltrating lymphocytes and the efficacy of certain immune-based therapies for cancer [3–6,7**,8]. Growth of tumors containing immunogenic epitopes is better explained through an understanding of the critical role of immunosuppression in promoting tumor escape [9–12]. Here, we review recent advances in our understanding of tumor immunosuppression and consider how a complex interplay between Treg and Teff cell populations dictates the outcome of tumor-specific immune responses.

A major advance in our understanding of peripheral tolerance arose with the identification of a suppressive subset of CD4+ T cells, referred to as Treg cells, that express the high-affinity receptor for interleukin (IL)-2, IL-2Ra, and whose deficiency in neonatally thymectomized mice results in lethal inflammatory disease [13]. The similar inflammatory phenotype manifested in ‘Scurfy’ mice [14] was later attributed to a complete defect in Treg cell formation caused by an inactivating mutation within the gene encoding the transcription factor (TF) Forkhead box P3 (Foxp3). This resulted in identification of Foxp3 as a lineage specifying TF of Treg cells [15–17]. A broader network of TFS, including BACH2 [18**] and Foxo1 [19**,20,21], are required to establish the full Treg cell transcriptional program. Humans lacking a functional Foxp3 locus develop a lethal immune-mediated disease (immunodysregulation polyendocrinopathy enteropathy X-linked syndrome; IPEX) [22], while genetic polymorphisms within the BACH2 locus are associated with multiple autoimmune and allergic diseases [18**]. These findings provide evidence that Treg cells regulate immune function in humans.

A complex interplay between CD4+ Treg and Teff cells determines the outcome of immune reactions. Under homeostatic conditions, Treg cells promote peripheral tolerance primarily through direct or indirect suppression of CD4+ Foxp3− Teff cells. This is evidenced by the absence of inflammation in Cdh4-deficient mice which lack both Treg and CD4+ Teff cell populations [23]. Treg cells also suppress Teff cell function within tumors (Figure 1). In murine tumor models, transient ablation of Treg cells results in activation of CD4+ or CD8+ Teff cells and rejection of solid tumors [24,25,26**,27]. In human tumors, low Treg cell to Teff cell ratios are associated with favorable survival in ovarian cancer [28,29], breast cancer [30], non-small cell lung carcinoma [31], hepatocellular carcinoma [32], renal cell carcinoma [33], pancreatic cancer [34], gastric cancer [35], cervical cancer [36]...
Figure 1

The balance of Teff and Treg cells in tumors determines the functional outcome of immune responses. Treg cells are represented in blue; Teff cells are represented in red; tumor cells are depicted in brown. A spectrum of Teff:Treg cell ratios is depicted in the diagram going from left to right. The two boxes to the left represent the range of Teff:Treg cell ratios normally found within solid tumors. Within this range, the higher Teff:Treg cell ratios is associated with good prognosis in multiple cancer types (Refs. [23–25,26,27–32]). The desired outcome of therapeutic manipulation of Teff:Treg cell ratios is depicted in the box to the right, where predominant Teff cell populations mediate widespread tumor cell destruction and eradication of disease.

and colorectal carcinoma [37]. CD4+ and CD8+ Teff cells exert tumoricidal activity through multiple means that are reviewed extensively elsewhere [38,39]. Thus, the balance between Treg and Teff cells dictates the outcome of tumor-specific immune responses (Figure 1). It is therefore important to understand factors that affect the population dynamics of Treg and Teff cells within tumors.

Population dynamics of Treg and Teff cells in tumors

The immunosuppressive function of Treg cells is at odds with the capacity of the immune system to mediate brisk and functional Teff cell responses against harmful pathogens in the context of acute infection. This implies that Treg cell suppressive capacity may be neutralized during infection to promote clearance of disease. Emerging evidence presents multiple mechanisms by which Teff cells antagonize the size and function of Treg cell populations not only during infection, but also during inflammation and under specific conditions within tumors. Thus, while suppression of Teff cells by a functionally predominant Treg cell population represents the status quo during the ‘escape’ phase of tumor development, we propose that under specific conditions that either occur spontaneously or are induced therapeutically, a second state involving Teff-mediated antagonism of Treg cell populations can be induced that results in predominant Teff cell function and clearance of disease.

The role of IL-2 signaling in Treg and Teff cell population dynamics

IL-2 was originally characterized as a lymphocyte growth factor in vitro and was considered to have immunostimulatory function [40,41]. Subsequent characterization using gene-deficient mice led to the surprising finding that its non-redundant biological function in vivo is to restrain lethal inflammation [42,43]. This is attributable to a non-redundant requirement for IL-2 in Treg cell survival [44–46]. IL-2-driven induction of the anti-apoptotic Bcl-2 family member Mcl-1 is critical for IL-2-dependent survival of Treg cells [47**].

Suppressed Teff cells support Treg cells through paracrine IL-2 production

IL-2 is primarily produced by CD4+ T cells and CD8+ T cells and, to a lesser extent, NK cells. Since Foxp3+ Treg cells do not produce the cytokine, paracrine IL-2 generated in an antigen-dependent fashion by Teff cells is required for Treg cell survival [46,48]. This enables coupling of Treg cell population size to the level of activation of Teff cells at distinct sites providing a negative feedback loop that prevents excessive immune activation under homeostatic conditions [47**,49,50**]. However, not all Teff cell populations produce IL-2 upon encounter with antigen and only ~10% of CD4+ T cells are primed for IL-2 production upon antigen stimulation [50**]. In multiple T cell lineages, IL-2 expression is only associated
with activation of cells in an intermediate stage of differentiation and this is extinguished upon full effector differentiation. This process has been well characterized within the CD8+ T cell lineage [51–54] and, to a lesser extent, within CD4+ T cells [55,56]. Multiple signals, including IL-2 itself, contribute to loss of IL-2 production by T_{eff} cell populations [50**]. In part, this occurs through induction of the transcription factor PR domain zinc finger protein 1 (Blimp-1), that promotes acquisition of effector cell characteristics and loss of memory cell features including IL-2 production [56–60]. Thus, it is likely that T_{eff} cells in intermediate stages of differentiation, rather than terminally differentiated effector cells, predominantly contribute to T_{reg} cell maintenance [61**].

It is possible that T_{reg} cells actively maintain T_{eff} cells in intermediate stages of differentiation by suppressing full effector differentiation, resulting in stabilization of IL-2-producing populations of T_{eff} cells. T_{reg} cells play a critical role in formation of memory CD8+ T cells by withholding IL-2 and preventing full effector differentiation in a subset of cells during the acute phase of primary CD8+ T cell responses [62**]. Moreover, production of TGF-β by T_{reg} cells prevents full cytotoxic effector differentiation in tumor-specific CD8+ T cells [63]. It is therefore plausible that T_{reg} cells, through sequestration of IL-2 and production of TGF-β, suppress full effector differentiation in T_{eff} cell populations to maintain a population of supportive IL-2-producing cells. This provides a potential feed-forward mechanism by which T_{reg} cell populations are supported by suppressed T_{eff} cells, constrained in intermediate stages of differentiation, to reinforce and stabilize the immunosuppressive state within tumors (Figure 2a).

Figure 2

(a) Immunosuppressive state

(b) Activated state

IL-2: The currency of T_{reg} and T_{eff} cell population dynamics. (a) Immunosuppressive state. T_{reg}-mediated suppression of T_{eff} cells results in blockade of full effector differentiation. This maintains T_{eff} cells in intermediate states of differentiation that support T_{reg} cells through antigen-dependent paracrine IL-2 production. (b) Activated immune state. Reduced T_{reg} cell suppression results in full T_{eff} cell differentiation. This is accompanied by loss of antigen-dependent IL-2 production and withdrawal of IL-2 support for T_{reg} cells. Additionally, expression of CD25 by activated T_{eff} cells enables them to sequester any remaining IL-2.
Unrestrained T_{eff} cell differentiation results in withdrawal of paracrine IL-2 support

T_{eff} cells progressively lose the capacity to produce IL-2 upon effector differentiation [50**,51–53,55–60]. This raises the possibility that under certain conditions, unrestrained differentiation of T_{eff} cells results in withdrawal of cytokine support for T_{reg} cells. Such ‘withdrawal’ of cytokine support by T_{eff} cell populations is powerfully evidenced by the work of Oldenhove et al., in their study of T_{reg} and T_{eff} cell population dynamics during lethal infection with Toxoplasma gondii in mice [64]. Following infection, a striking collapse in T_{reg} cell frequency and absolute number coincides with loss of IL-2 production by Foxp3^- CD4^+ T cells in the gut. This correlates with acquisition of a type helper 1 (Th1)-polarized state in which cells progressively lose expression of IL-2 and gain expression of IFN-γ as infection progresses toward its lethal outcome. Strikingly, complementation of IL-2 signaling through provision of exogenous IL-2 restores T_{reg} cell numbers and prevents lethality. These findings have been recapitulated in Listeria monocytogenes and vaccinia virus infection [65**]. Thus, induction of specific T_{eff} cell polarization states results in withdrawal of IL-2 support for T_{reg} cells, collapse in their population size, and unrestrained T_{eff} cell activation. Moreover, expression of IL-2Ra on T_{eff} cells is induced by antigen activation and terminal differentiation and may enable T_{eff} cells to sequester any remaining IL-2, further limiting its availability to T_{reg} cells [66,67].

Thus, complex regulation of IL-2 and its high-affinity receptor IL-2Ra results in the potential for bistability in T_{reg} and T_{eff} cell population dynamics within tumors. First, an immunosuppressive state exists where T_{reg} cells are supported by IL-2-producing T_{eff} cells constrained in intermediate states of differentiation (Figure 2a). This immunosuppressive state predominates during the escape phase of tumor development. Second, an activated immune state exists, in which unrestrained T_{eff} cell differentiation results in withdrawal of paracrine IL-2 support and competition for remaining IL-2 through antigen-driven expression of IL-2Ra (Figure 2b). While this state is rarely achieved spontaneously following tumor escape, such conditions may be achieved following therapeutic intervention (discussed below). The potential for IL-2 competition to account for population bistability is supported by mathematical models [68–70].

Reciprocal antagonism between T_{reg} and T_{eff} cell populations

T_{reg}-mediated suppression of T_{eff} cell populations

In states of tolerance, including during tumor escape, T_{reg} cells block the proliferation, survival and function of T_{eff} cells through multiple means. These have been extensively reviewed [71] and are depicted in Figure 3a. A subset of Foxp3^+ T_{reg} cells constitutively express IL-2Ra and sequestration of IL-2 by T_{reg} cells is a component of their suppressive function [72,73]. However, expansion of T_{eff} cells and induction of lethal inflammation caused by T_{reg} cell insufficiency can proceed in the complete absence of IL-2 since IL-2 deficient mice succumb to lethal autoimmunity related to defective T_{reg} cell homeostasis [42,46,66], indicating redundant modes of suppression. These have been extensively reviewed elsewhere [71] and include CTLA-4-mediated sequestration of CD80 and CD86 on the surface of APC by trogocytosis [74] and expression of inhibitory cytokines such as TGF-β [75–77], IL-10 [78,79] and IL-35 [80,81]. Further, paracrine production of adenosine by T_{reg} cells suppresses T_{eff} cell differentiation and function [82,83]. Direct cytolyis of T_{eff} cells by T_{reg} cells is an additional mechanism of immunosuppression and has been attributed to expression of granzyme B and perforin by T_{reg} cells [84,85]. This was found to contribute to T_{reg}-mediated immunosuppression within tumors [86]. Finally, delivery of micro-RNA-containing exosomes is another mechanism of T_{reg}-mediated immunosuppression [87]. Innate immune cells contribute to feed-forward reinforcement of immunosuppressive states induced by T_{reg} cells. Amplification of inhibitory cytokine signaling by pro-tumorigenic tumor-associated macrophages (TAM) bearing an M2 (or alternatively activated) phenotype [88,89], and dendritic cells [9] are all implicated in promoting stability of immunosuppressive states within tumors.

Antagonism of T_{reg} cell populations by T_{eff} cells

During infection or upon induction of immune-mediated tumor rejection, emerging evidence indicates that T_{eff} cells may directly antagonize the stability and survival of T_{reg} cell populations to decrease their suppressive capacity, as depicted in Figure 3b. Selective killing of T_{reg} cells by T_{eff} cells is an example of such behavior. A decrease in T_{reg} cell numbers within tumors accompanies intratumoral IL-12 injection and this is dependent upon intrinsic expression of the death-receptor ligand FasL by CD8^+ T cells [90]. This observation is attributed to direct FasL-mediated killing of T_{reg} cells by T_{eff} cells. Induction of T_{reg} cell lineage instability is another mechanism by which immune activation within tumors may antagonize T_{reg} cell population size. The topic of T_{reg} cell lineage instability is controversial. By indelibly labeling cells and their progeny that had transcriptionally activated the endogenous Foxp3 locus, Rubtsov et al., concluded that T_{reg} cells rarely convert into Foxp3^- ‘ex-Foxp3’ cells under physiological conditions or when perturbed during inflammation or lymphopenia [91]. However, using a similar approach based on a Foxp3 reporter construct encoded by a bacterial artificial chromosome, Zhou et al., observed accumulation of ‘ex-Foxp3’ IL-17-expressing cells in inflamed joints in response to synovial IL-6 [92]. Conversion of purified populations of Foxp3^+ T_{reg} cells into Foxp3^- cells has also been observed in adoptive transfer models, both under conditions of extreme inflammation induced through allogeneic bone-marrow
transplantation [93], and extensive lymphopenia-induced proliferation [94]. These studies implicate the inflammatory cytokines IL-6 and/or IL-4, that are produced by T_{eff} cells, in driving lineage instability. It is therefore possible that under the inflammatory conditions induced by specific immune-based therapies for cancer, T_{reg} cell lineage instability contributes to reversal of tumor immunosuppression.

The balance of T_{reg} to T_{eff} cells is also modulated at the level of their induction. A proportion of T_{reg} cells found in peripheral tissues arise in the thymus (thymic T_{reg} or rT_{reg} cells) and play a predominant role in promoting tumor immunosuppression [95]. However, induced T_{reg} (iT_{reg}) cells develop from conventional Foxp3^{-} naïve CD4^{+} T cells in extrathymic tissues [96]. De novo induction of iT_{reg} cells is observed within tumors [97] and their suppressive function has been demonstrated in the context of therapeutic vaccination [98] and adoptive transfer immunotherapy [99]. A number of effector cytokines, including IL-4, IL-6 and IL-23 are involved in driving de novo induction of T_{reg} cell lineages from naïve CD4^{+} T cell precursors [100] and this process is implicitly reciprocal to de novo induction of iT_{reg} cells from the same
Thus, direct antagonism of T_{reg} cell number and function equip T_{eff} cells with the capacity to disrupt T_{reg}-mediated immunosuppression once a specific threshold of activation has been achieved. Feed-forward reinforcement by innate immune cells within tumors contributes to the stability of activated immune states. In particular, Th1 cytokine-induced polarization of TAM into M1 (or classically activated) cells further potentiates immune activation through production of IL-12, IL-1, IL-6, TNF-α and IL-23 [88,89]. Additionally, dendritic cells provide further potential for feed-forward reinforcement by producing IL-12 in response to T_{eff} cell-derived IFN-γ.

Opportunities for therapeutic intervention

Reciprocal antagonism and feed-forward reinforcement contribute to the potential for two distinct immune states. First, an immunosuppressive state, which is established early during the escape phase of tumor development, is stabilized through provision of IL-2 support by suppressed T_{eff} cells for T_{reg} cells. Second, an activated immune state, in which unrestrained T_{eff} cell differentiation is accompanied by withdrawal of cytokine support and direct antagonism of T_{reg} cell populations to drive clearance of disease. Despite the potential availability of activated immune states, immunosuppressive states represent the status quo of tumor escape and entry into activated immune states is rarely achieved. However, under certain circumstances that either arise spontaneously [105,106] or in the context of therapeutic manipulation, transition into a self-reinforcing activated immune state may occur. An entropy model can be utilized to consider the ‘energy-barrier’ to transition between immunosuppressive and activated immune states (Figure 4). The energy-barrier to transition between states may differ between highly immunogenic (left panel) and poorly immunogenic cancers (right panel). The molecular basis for differences between poorly immunogenic and highly immunogenic tumors are incompletely elucidated but new findings support a prominent contribution of mutational load in driving heterogeneous immunogenicity and clinical outcomes to immune-based therapy [107–109].

A bistable model of T_{reg} and T_{eff} cell population dynamics has two important implications for cancer immunotherapy. First, the potential for immune-based therapies to achieve durable complete regression of disease distinguishes them from traditional chemotherapy. An attractive explanation for the striking durability of such clinical responses despite transient administration of therapy is the induction of self-reinforcing activation states within tumors. Secondly, while direct targeting of T_{reg} cells represents a strategy for disruption of immunosuppression in cancer, T_{eff} cell populations directly and indirectly antagonize T_{reg} cells. Thus, induction of immune activation represents an alternate strategy to reverse immunosuppression and a potential mechanism by which some therapies targeting T_{eff} cell function cause durable regression of disease. Thus, current immune-based therapies must be considered in the context of their effect on T_{reg} and T_{eff} cell population dynamics within tumors.

Attempts have been made to distinguish the effect of immune-based therapies on T_{reg} and T_{eff} cell populations within tumors. However, a majority of current immune-based therapies directly affect both T_{eff} and T_{reg} cells.
Monoclonal antibody therapy targeting CTLA-4 results in durable complete responses in patients with metastatic melanoma [6]. Initial reports attributed efficacy to an isolated effect on T\textsubscript{eff} cell populations [110–112]. However, CTLA-4 treatment results in increased T\textsubscript{eff}/T\textsubscript{reg} cell ratios within tumors [113*,114,115] and its efficacy, in part, requires depletion of antibody-bound T\textsubscript{reg} cells by Fc\textgamma{} receptor–expressing macrophages within the tumor microenvironment [116,117]. Thus, CTLA-4 therapy both activates T\textsubscript{eff} cells and depletes T\textsubscript{reg} cells within tumors and it is plausible that disruption of the immunosuppressive balance of T\textsubscript{reg} and T\textsubscript{eff} cells contributes to durable tumor regression observed in a subset of treated patients. Similarly, monoclonal antibody therapy targeting the programmed cell death 1 (PD-1) receptor results in durable regression of disease in a substantial proportion of patients with metastatic melanoma [7**] and in a smaller proportion of patients with renal cell carcinoma, non-small cell lung cancer and ovarian cancer [8,118]. PD-1 is preferentially expressed on recently activated or exhausted T cells and negatively regulates effector function [119]. However, PD-1 signaling is also implicated in the induction and function of peripheral iT\textsubscript{reg} cells [120] and blockade of PD-1 signaling causes both decreased Foxp3+ T\textsubscript{reg} Cell ratios and augmented T\textsubscript{eff} cell function in a murine melanoma therapy model [121]. Thus, the striking efficacy of monoclonal antibodies targeting PD-1 and CTLA-4 may be related to alterations in the balance of T\textsubscript{reg} and T\textsubscript{eff} cells within tumors. IL-12 also causes profound immune-mediated tumor regression with concomitant activation of T\textsubscript{eff} cells in preclinical models, though systemic delivery of IL-12 in humans results in limiting adverse events [122,123]. In a number of mouse models, IL-12 administration causes increased T\textsubscript{eff}/T\textsubscript{reg} cell ratios [124,125]. While in some models, this is attributable to killing of T\textsubscript{reg} cells by T\textsubscript{eff} cells within tumors [90], IL-12 also has direct effects on the function and stability of T\textsubscript{reg} cells [64].

In some cases, the effects of immune-based therapies on T\textsubscript{reg}/T\textsubscript{eff} ratios are unclear. High-dose IL-2 therapy results in durable clearance of metastatic melanoma and renal cell carcinoma in a minority of patients [126–128]. While this therapy results in transiently increased frequencies of peripherally circulating T\textsubscript{reg} cells [129], its long-term effect on the ratio of T\textsubscript{reg}/T\textsubscript{eff} cells following withdrawal of therapy and specifically within tumors is not well established. In mice, administration of exogenous IL-2 drives differentiation of T\textsubscript{eff} cells and loss of the IL-2–producing population of cells [50**]. This is significant given the function of IL-2–producing T\textsubscript{eff} cells in maintenance of T\textsubscript{reg} Cell populations. Depletion of the IL-2 producing T\textsubscript{eff} cell pool within tumors and loss of T\textsubscript{reg} cell supportive capacity amongst TIL may represent a mechanism by which high-dose IL-2 causes durable complete regression of disease in a subset of patients. Durable complete responses are also observed following adoptive cell therapy (ACT) using bulk TIL populations [130–132] but the effect of therapy on endogenous T\textsubscript{reg} and T\textsubscript{eff} cell populations is poorly resolved. Reshaping of the endogenous T\textsubscript{reg}/T\textsubscript{eff} cell balance may, however, contribute to durable responses observed with both high-dose IL-2 therapy and ACT. Thus, a majority of immune-based therapies for cancer affect T\textsubscript{eff} and T\textsubscript{reg} cell population dynamics within tumors. Further detailed experimental investigation is required to separate direct from indirect effects of such therapies of T\textsubscript{reg} and T\textsubscript{eff} Cell populations and their functional consequences.

In conclusion, mechanisms of reciprocal antagonism and self-reinforcement drive bistability in T\textsubscript{reg} and T\textsubscript{eff} cell population dynamics, enabling the immune system to exclusively consolidate the divergent outcomes of tolerance and immunity. An understanding of the complexity of T\textsubscript{reg} and T\textsubscript{eff} cell population dynamics has implications for rationalizing the striking durability and efficacy of immune-based therapies for cancer and provides a basis for development of new strategies that manipulate immune function in cancer patients.

Acknowledgements and funding

The authors were supported by a generous gift from Li Jinyuan and the Tiens Charitable Foundation, the NIH-Center for Regenerative Medicine, the Milstein Family Foundation and by the Intramural Research Program of the National Cancer Institute (ZIA BC010763). R.R. is supported by a Sir Henry Dale Fellowship jointly funded by the Wellcome Trust and the Royal Society (Grant Number 105663/Z14/Z). The authors thank Alan Hoofring and Ethan Tyler for their assistance with illustrations, and David Clever, Luca Gattinoni, Christopher Klebanoff, Yun Ji, Madhusudhanan Sukumav, Joseph Crompton and Jenny Pan for insightful comments and discussions.

References and recommended reading

Papers of particular interest, published within the period of review, have been highlighted as:

- of special interest
- of outstanding interest

This landmark study demonstrates efficacy of α-PD-1 treatment in patients with metastatic melanoma.

The gene encoding the transcription factor BACH2 is a prominent susceptibility locus for multiple autoimmune and allergic diseases. This study demonstrated a non-redundant role for BACH2 in maintenance of immune homeostasis through its role in Treg cell development.

This study demonstrated that Treg cell-intrinsic expression of the transcription factor Foxo1 is required for Treg-mediated immune homeostasis.

Systemic depletion of Treg cells results in significantly attenuated growth and metastasis of established tumors. This is accompanied by increased tumor cell apoptosis and tumor clearance was dependent upon CD4+ T effector cells. Tumor clearance was not further augmented by α-CTLA-4 or a PD-1/PD-L1 treatment. This demonstrates a significant role for promotion of substantial tumor growth by endogenous Treg cells.

Interplay of effector and regulatory T cells in cancer

Roychoudhuri, Eil and Restifo 109

37. Sinicrope FA, Rego RL, Ansell SM, Knutson KL, Foster NR, Sargent DJ: Intraepithelial effector (CD8+/regulatory (FoxP3+)-

48. Incomplete depletion of endogenous Treg cells is accompanied by expansion of the residual Treg cell pool. This is driven by increased production of IL-2 from conventional T cells. IL-2 acts to upregulate Mcl-1 within Treg cells and conditional deletion of Mcl-1 results in defective Treg cell homeostasis and fatal autoimmunity.

The compartment of IL-2 producing CD4 T cells is tightly controlled and is comprised approximately 10% of total CD4 T cells under homeostatic conditions in vivo. Administration of exogenous IL-2 decreases the size of the IL-2-producing population while depletion of Treg cells increases the number of IL-2-producing cells. This provides a negative feedback loop to regulate the size of the Treg cell pool and enable its coupling to the activation state of Treg cells under physiological conditions.

In this important review, the role of IL-2 in driving distinctive Treg and T effector cell population dynamics under various physiological and disease states is discussed.

In this study, depletion of Treg cells during the acute phase of vaccinia virus infection results in decreased ability to mount secondary recall responses upon reinfection. The presence of Treg cells decreases exposure of CD8+ T cells to IL-2 during priming enabling generation of long-lived memory cell responses. This is significant to the topic of this review since memory CD8+ T cells produce higher levels of IL-2 upon antigen-activation than effector cells and defines a function of Treg cells in their differentiation.

This study extends earlier work by Oldenhov et al. [64] and provides evidence that during parasitic, bacterial, and viral infection Treg cells differentiate into a highly activated state in which they produce IFN-γ, but lose the capacity to produce IL-2. Loss of IL-2 availability results in reduced Treg cell population size and suppressive capacity and this is reversed by supplementation with exogenous IL-2.

110 Tumour immunology

114. Blockade of CTLA-4 function in T eff cells is considered to be a mode of anti-tumor activity of anti-CTLA-4 treatment. In this study, the authors elegantly demonstrate that α-CTLA-4 treatment functions, in part, by causing antibody-mediated depletion of intratumoral T reg cells by FcγR IV-expressing macrophages. This implies that CTLA-4 therapy has distinct effects of T reg and T eff cell populations.

