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Summary

There have been substantial strides forward in our understanding of the

contribution of regulatory T (Treg) cells to cancer immunosuppression.

In this issue, we present a series of papers highlighting emerging themes

on this topic relevant not only to our understanding of the fundamental

biology of tumour immunosuppression but also to the design of new

immunotherapeutic approaches. The substantially shared biology of CD4+

conventional T (Tconv) and Treg cells necessitates a detailed understand-

ing of the potentially opposing functional consequences that immunother-

apies will have on Treg and Tconv cells, a prominent example being the

potential for Treg-mediated hyperprogressive disease following anti-PD-1

therapy. Such understanding will aid patient stratification and the rational

design of combination therapies. It is also becoming clear, however, that

Treg cells within tumours exhibit distinct biological features to both

Tconv cells and Treg cells in other tissues. These distinct features provide

the opportunity for development of targeted immunotherapies with

greater efficacy and reduced potential for inducing systemic toxicity.

T cells have an ability to recognize and kill cancer cells

but their function is often suppressed within tumours.

Whereas CD4+ and CD8+ conventional T (Tconv) cells

promote immune activation, CD4+ regulatory T (Treg)

cells, dependent upon the transcription factor Foxp3, sup-

press Tconv cell responses and are required for immune

homeostasis in both mice and humans.1,2 Beyond this

beneficial function, Treg cells can cause profound sup-

pression of immune function within tumours.3,4 In a

variety of murine tumour models, ablation of Treg cells

results in activation of CD4+ or CD8+ Tconv cells and

rejection of solid tumours.5–8 Moreover, high Treg ratios

relative to total T cells or CD8+ Tconv cells are associated

with poorer survival in breast cancer,9 non-small-cell lung

carcinoma,10 hepatocellular carcinoma,11 ovarian can-

cer,12,13 renal cell carcinoma,14 pancreatic cancer,15 col-

orectal carcinoma,16 gastric cancer17 and cervical cancer.18

An understanding of a powerful role of Treg cells in

tumour immunosuppression is emerging with extensive

evidence from experimental mouse models complemented

by a growing body of evidence in human cancer. In this

Review series, we consider the progress made in our

understanding of the mechanisms that lead to the accu-

mulation and suppressive function of Treg cells within

tumours, the unique properties of tumour-infiltrating

Treg cells, and our means to selectively target them in

cancer.

Although their immunosuppressive function make Treg

cells in themselves an attractive target for specifically

directed therapy, it is also important to consider the

effects upon Treg cells of conventional immunotherapies

thought to primarily target Tconv cells. Despite striking

efficacy in some cases, therapies targeting programmed

death 1 (PD-1)/ programmed death ligand 1 (PD-L1) sig-

nalling are ineffective at inducing durable responses in a

majority of patients and can induce rapidly progressive

disease referred to as ‘hyperprogression’ in a minority of

patients.19,20 A recent study suggests that hyperprogres-

sion is in part attributable to blockade of PD-1 signalling

on Treg cells which, in susceptible individuals, results in

enhanced Treg suppressive function.21 It remains to be

determined whether a similar phenomenon underlies
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poor clinical responses to PD-1 therapy in subsets of

patients but the findings highlight the need to consider

the opposing effects that immunotherapies may have on

the Tconv and Treg compartments. Indeed, such consid-

eration may provide a basis for patient stratification or

the rational design of combination immunotherapy. Evi-

dence from both mouse models22 and human cancer

patients23 indicate that the activity of anti-cytotoxic T-

lymphocyte antigen 4 (CTLA-4) therapy is in part attri-

butable to antibody-dependent cellular cytotoxicity-medi-

ated depletion of intratumoural Treg cells, which express

high levels of CTLA-4. Indeed, in patients with advanced

melanoma, favourable response to treatment with the

anti-CTLA4 monoclonal antibody ipilimumab was associ-

ated, among patients with inflamed tumours, with the

presence of a coding polymorphism within CD16a/

FccRIIIa that results in its higher affinity for Fc, suggest-

ing that FccRIIIa-dependent antibody-dependent cellular

cytotoxicity is involved in the efficacy of ipilimumab ther-

apy in humans.23 As Lim and Okkenhaug point out, Treg

and Tconv cells also have substantially shared intracellular

signalling pathways and the balance to which distinct

immunomodulatory agents affect Treg suppression versus

Teff cell-mediated anti-tumour immunity determines

their net effect upon tumour progression as is exemplified

by the net immunostimulatory effect of genetic or phar-

macological disruption of Phosphoinositide 3-kinase

(PI3K)-d activity.24 Moreover, it is likely that shared

expression of CCR4 on tumour-infiltrating Treg cells and

activated CD4+ and CD8+ Tconv cells may have con-

tributed to the lack of robust clinical efficacy of antibody

reagents targeting these molecules.25 Finally, as discussed

by Yano et al.,26 checkpoint immunotherapy may result

in reactive recruitment of Treg cells to tumours in

response to increased inflammation. Hence, a theme

emerging from a number of reviews in this series is the

substantially shared biology of Treg and Tconv cells and

the need to consider the effects of therapy on both Treg

and Tconv compartments.

Frequency of Treg cells in the tumour immune infil-

trate often far exceeds that in normal tissues, suggesting

that co-option of Treg cells by tumours is an important

feature of cancer development and a requisite for cancer

progression in a number of tumour types. Stockis et al.27

consider the mechanisms that drive Treg cell accumula-

tion within tumours, reviewing our understanding of the

molecular basis for recruitment and maintenance of Treg

cells within tumours, and proposing that selective recruit-

ment of thymic Treg cells rather than de novo induction

of induced Treg cells is the dominant mechanism by

which Treg cells accumulate in cancer. While experimen-

tal observations supportive of this conclusion are pre-

sented, the relative functional contribution of thymic

Treg and induced Treg cells to tumour immunosuppres-

sion has yet to be formally established. Treg cells within

tumours express high levels of specific chemokine recep-

tors, such as CCR2, CCR4, CCR8 and CCR10, and it is

plausible, though again not clearly established, that

expression of these receptors drives the recruitment of

Treg cells into tumours. In addition, the association of

tumours with tertiary lymphoid structures contributes to

recruitment of Treg cells into tumours.28 The tumour

environment provides an environment supportive of Treg

cell proliferation, and Stockis et al. also review the role of

co-stimulatory and co-inhibitory receptor and cytokine

signalling on Treg cell maintenance and activation in

tumours. It is clear, however, that more work is needed

to better dissect the distinct functions of chemokine,

cytokine and co-stimulatory/co-inhibitory receptors on

Treg and Tconv cell migration and function, respectively.

Given the shared involvement of Treg cells in immuno-

logical tolerance and tumour immunosuppression, selec-

tive targeting of Treg cells in tumours is desirable but

requires an understanding of their specific biological

characteristics. Yano et al.26 consider the specific molecu-

lar and functional characteristics of Treg cells in tumours,

observing that a number of molecular, cellular and meta-

bolic characteristics distinguish them from Treg cells in

other tissues. Joshi et al. describe attempts made to target

the immunosuppressive function of Treg cells in preclini-

cal mouse tumour models and in the clinic.28 Such

attempts include systemic administration of P300/HAT,

EZH2 and BET inhibitors whose consequence upon Treg

cell suppression results in augmented tumour immunity.

Green et al. review the role of tissue-resident Treg cells in

promoting both non-immune processes and immune

processes associated with wound healing. In part, this

activity is mediated by release of the epidermal growth

factor-like growth factor amphiregulin by Treg cells,

whose activity extends beyond its canonical function in

wound repair to promoting the release of bioactive trans-

forming growth factor-b through inside-out activation of

integrins. The extent to which the function of Treg-

derived amphiregulin in promoting tumour immunosup-

pression involves canonical and non-canonical amphireg-

ulin functions has yet to be determined.29

In summary, there have been substantial strides in our

understanding of the contribution of Treg cells to tumour

immunosuppression. A detailed understanding of the

often opposing effects of immunotherapies on both the

Tconv and Treg compartments will aid the design of new

immunotherapy approaches and the interpretation of

their outcomes. In addition, there is a growing awareness

of the involvement of Treg cells in influencing the out-

come of conventional checkpoint inhibitor therapy

responses, with potential functional contributions as pro-

found and deleterious as anti-PD-1-induced hyperpro-

gression. In this context, the shared biology of Treg and

Tconv cells presents both an obstacle and an opportunity,

especially for patient stratification and rational design of
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combination immunotherapies. The observation that Treg

cells in tumours harbour distinct molecular profiles that

contribute to their selective migration and function and

that distinguish them from Treg cells in other tissues pro-

vides extremely important opportunities for the selective

targeting of Treg cells in cancer.
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